6-OXYPURINE

PRODUCT IDENTIFICATION

CAS NO.

68-94-0

6-OXYPURINE

EINECS NO. 200-697-3
FORMULA C5H4N4O
MOL WT. 136.11

H.S. CODE

 

TOXICITY

 

SYNONYMS

Hypoxanthine; 1,7-Dihydro-6H-purin-6-one;

Purine-6-ol; 6-Hydroxypurine;

SMILES

 

CLASSIFICATION

 

PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL STATE white powder
MELTING POINT > 250 C (Decomposes)
BOILING POINT  
SPECIFIC GRAVITY  
SOLUBILITY IN WATER Insoluble
pH  
VAPOR DENSITY

 

AUTOIGNITION

 

NFPA RATINGS

Health: 1; Flammability: 0; Instability: 0

REFRACTIVE INDEX

 

FLASH POINT  
STABILITY

Stable under ordinary conditions

GENERAL DESCRIPTION AND APPLICATIONS

Purine is a heterocyclic compound featured by a fused pyrimidine and imidazole rings composed of carbon and nitrogen atoms. The simplest one is purine itself and the two major purines are adenine(6-Aminopurine) and guanine(2-Amino-6-hydroxypurine) which are two bases components of nucleic acid and the nucleotides. Purine itself is not found in nature, but as substituted purines such as methyled, hydroxyl and amino substituted. In addition to adenine and guanine, a group of chemical compounds called purine base include hypoxanthine (6-oxypurine), xanthine (2,6-dioxypurine), uric acid (2,6,8-trioxypurine), and theobromine (3,7-dimethyl xanthine). Theophylline and caffeine are a member of methylated purine family. Purines are biologically important in In medicine and biological research.
SALES SPECIFICATION

APPEARANCE

white powder

ASSAY

98.0% min
MELTING POINT > 250 C
TRANSPORTATION
PACKING
 
HAZARD CLASS Not regulated
UN NO.  
OTHER INFORMATION
Hazard Symbols: , Risk Phrases: 22-36/37/38, Safety Phrases: 26-36

GENERAL DESCRIPTION OF NUCLEOSIDE

Ribose is a pentose (five-carbon sugar) that is a component of the ribonucleic acid (RNA), where it alternates with phosphate groups to form the 'back-bone' of the RNA polymer and binds to nitrogenous bases. Ribose phosphates are components of the nucleotide coenzymes and are utilized by microorganisms in the synthesis of the amino acid histidine. Its close relative, deoxyribose, is a constituent of deoxyribonucleic acid (DNA), where it alternates with phosphate groups to form the 'back-bone' of the DNA polymer and binds to nitrogenous bases. The presence of deoxyribose instead of ribose is one difference between DNA and RNA. Ribose has one more oxygen atom in its molecule than deoxyribose. Ribose has a five member ring composed of four carbon atoms and one oxygen. Hydroxyl groups are attached to three of the carbons. The other carbon and a hydroxyl group are attached to one of the carbon atoms adjacent to the oxygen. In deoxyribose, the carbon furthest from the attached carbon is stripped of the oxygen atom in what would be a hydroxyl group in ribose. The sugar (ribose or deoxyribose) molecules in the nucleic acid are all oriented in the same direction. Their carbon atoms are numbered: the 5' carbon atom is always on the side of the sugar molecule that faces the leading end, while the 3' carbon atom always faces the tail end. Nucleotide is the structural unit of a nucleic acid. A nucleotide consists of either a nitrogenous heterocyclic base (purine or pyrimidine) , a pentose sugar (ribose or deoxyribose) and a phosphate group attached at the 5' position on the sugar. A nucleoside consists of only a pentose sugar linked to a purine or pyrimidine base, without a phosphate group. Purine bases are Adenine, Guanine and Hypoxanthine (examples of purine nucleosides are Adenosine, 2'-Deoxyadenosine, Guanosine, 2'-Deoxyguanosine, Inosine, 2'-Deoxyinosine). Pyrimidine bases are Cytosine, Thymine, and Uracil (examples of pyrimidine nucleosides are Cytidine, 2'-Deoxyguanosine, 5-Methyluridine, 2'-Deoxy-5-Methyluridine, Uridine, 2'-Deoxyuridine). The nucleoside derivatives are involved in important functions in cellular metabolism and are used to synthesize enzyme inhibitors, antiviral agents, and anticancer agents.