L-HISTIDINE

PRODUCT IDENTIFICATION

CAS NO. 71-00-1

L-HISTIDINE

EINECS NO. 200-745-3
FORMULA C6H9N3O2
MOL WT. 155.16

H.S. CODE

2922.49

TOXICITY

Oral rat LD50: >15000 mg/kg 
SYNONYMS Glyoxaline-s-Alanine; H-His-OH;
(S)-4-(2-Amino-2-carboxyethyl)imidazole; (S)-alpha-Amino-1H-imidazole-4-propanoic acid; (S)-1H-Imidazole-4-alanine; 4-(2-amino-2-carboxyethyl)Imidazole; Alpha-amino-4(Or 5)-Imidazolepropionic Acid; Glyoxaline-5-alanine; HIS; S-Histidine;
SMILES  

CLASSIFICATION

 

PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL STATE

white crystals

MELTING POINT Decomposes (> 282 C)
BOILING POINT  
SPECIFIC GRAVITY

1

SOLUBILITY IN WATER soluble
pH 7 - 8.5
VAPOR DENSITY

 

AUTOIGNITION

 

NFPA RATINGS

Health: 1; Flammability: 0; Reactivity: 0

REFRACTIVE INDEX

 

FLASH POINT

282 C

STABILITY

Stable under ordinary conditions. Moisture, light sensitive.

GENERAL DESCRIPTION

Amino Acid is any of the organic compounds in which one (or more ) amino group (-NH2) and one (or more ) carboxylic acid group (-COOH) are both present with general formula R-CH(NH2)COOH containing carbon, hydrogen, oxygen, nitrogen, and in certain cases sulfur atoms. Two groups attached to the same carbon (called the alpha-carbon atom at the end of the compound) are polymerized to form peptides and proteins. The amine group is protonated to form -NH3+ at low pH. The carboxylic acid group is deprotonated to form -CO2- at high pH. The carbon atom in the carboxyl group of one amino acid binds covalently to the nitrogen atom in the amino group of another amino acid to form a peptide bond with the release of a water molecule. Proteins are synthesized through the covalent chemical polypeptide bonds. The sequence of these amino acids in the protein polypeptides determines the shape, properties, and hence biological role of the protein that function as chemical messengers and as intermediates in metabolism. Proteins are composed of various proportions of about 20 commonly occurring amino acids. Plants or other biological systems can synthesize amino acids from simple inorganic compounds, but animals rely on adequate supplies in their diet. More than 100 common amino acids occur in plants or in other microorganic systems. The 20 amino acids commonly found in animals are Alanine, Arginine, Asparagine, Aspartic Acid, Cysteine, Glutamic Acid, Glutamine, Glycine, Histidine, Isoleucine, Leucine, Lysine, Methionine, Phenylalanine, Proline, Serine, Threonine, Tryptophan, Tyrosine, and Valine. Many of the amino acids can be synthesized in the human or animal body from other cellular metabolites when needed (called Non-essential Amino Acids). Animals are not able to synthesize some amino acids necessary in metabolism in sufficient quantities. It must therefore be present in the diet (called Essential Amino Acids). In man, these essential amino acids are Arginine, Histidine, Isoleucine, Leucine, Lysine, Methionine, Phenylalanine, Threonine, Tryptophan and Valine. Histidine which has an imidazole side chain is a basic amino acid present in hemoglobin in large amounts and resulting from the hydrolysis of most proteins. It is considered an essential amino acid for infants. Only the L-stereoisomer is present in mammalian protein. Histidine acts important role for the growth and repair of tissues. Histidine is the direct precursor of physiology active substance, histamine, by action of histidine decarboxylase. The side-chain groups of amino acid residues making up the enzyme molecule at or near the active site participate in the catalytic event. For example, in the enzyme trysin, its complex tertiary structure brings together a histidine residue from one section of the molecule with glycine and serine residues from another. The side chains of the residues in this particular geometry produce the active site that accounts for the enzyme¡¯s reactivity. It is also an important source of carbon atoms in the synthesis of purines. Purine and its derivatives are biologically important components of nucleic acids (DNA, RNA) and coenzymes.
SALES SPECIFICATION

APPEARANCE

white crystals

ASSAY

98.0 - 101.0%

SPECIFIC ROTATION

+12° ~ +14° (C=11%, 6N HCl)

LOSS ON DRYING

0.3% max

RESIDUE ON IGNITION

0.1% max

NH4

0.02% max

CHLORIDE

0.02% max

SULFATE

0.02% max

HEAVY METALS

10ppm max

ARSENIC

1ppm max

TRANSPORTATION
PACKING
25kgs in fiber drum
HAZARD CLASS Not regulated
UN NO.  
OTHER INFORMATION
Hazard Symbols: n/a, Risk Phrases: n/a, Safety Phrases: 24/25

GENERAL PROPERTIES OF AMINO ACIDS

Amino Acid

Abbreviation

Formula (Mol WT)

pK1

pK2

pKR

pI

Hydropathy Index

3-Letters

1-Letter

-COOH

-NH3+

R group

Alanine

Ala

A

C3H7NO2 (89.09)

2.34

9.69

-

6.00

1.8

Arginine

Arg

R

C6H14N4O2(174.20)

2.17

9.04

12.48

10.76

-4.5

Asparagine

Asn

N

C4H8N2O3(132.12)

2.02

8.80

-

5.41

-3.5

Aspartic Acid

Asp

D

C4H7NO4(133.10)

1.88

9.60

3.65

2.77

-3.5

Cysteine

Cys

C

C3H7NO2S(240.30)

1.96

10.128

8.18

5.07

2.5

Glutamic Acid

Glu

E

C5H9NO4(147.13)

2.19

9.67

4.25

3.22

-3.5

Glutamine

Gln

Q

C5H10N2O3(146.15)

2.17

9.13

-

5.65

-3.5

Glycine

Gly

G

C2H5O2(75.07)

2.34

9.60

-

5.97

-0.4

Histidine

His

H

C6H9N3O2(155.16)

1.82

9.17

6.00

7.59

-3.2

Isoleucine

Ile

I

C6H13NO2(131.18)

2.36

9.60

-

6.02

4.5

Leucine

Leu

L

C6H13NO2(131.18)

2.36

9.60

-

5.98

3.8

Lysine

Lys

K

C6H14N2O2(146.19)

2.18

8.95

10.53

9.74

-3.9

Methionine

Met

M

C5H11NO2S(149.21)

2.28

9.21

-

5.74

1.9

Phenylalanine

Phe

F

C9H11NO2(165.19)

1.83

9.13

-

5.48

2.8

Proline

Pro

P

C5H9NO2(115.13)

1.99

10.60

-

6.30

1.6

Serine

Ser

S

C3H7NO3(105.19)

2.21

9.15

-

5.58

-0.8

Threonine

Thr

T

C4H9NO3(119.12)

2.09

9.10

-

5.60

-0.7

Tryptophan

Trp

W

C11H10N2O2(204.23)

2.83

9.39

-

5.89

-0.9

Tyrosine

Tyr

Y

C9H11NO3(181.19)

2.20

9.11

10.07

5.66

-1.3

Valine

Val

V

C5H11NO2(117.15)

2.32

9.62

-

5.96

4.2